A comprehensive validity index for clustering
نویسندگان
چکیده
Cluster validity indices are used for both estimating the quality of a clustering algorithm and for determining the correct number of clusters in data. Even though several indices exist in the literature, most of them are only relevant for data sets that contain at least two clusters. This paper introduces a new bounded index for cluster validity called the score function (SF), a double exponential expression that is based on a ratio of standard cluster parameters. Several artificial and real-life data sets are used to evaluate the performance of the score function. These data sets contain a range of features and patterns such as unbalanced, overlapped and noisy clusters. In addition, cases involving sub-clusters and perfect clusters are tested. The score function is tested against six previously proposed validity indices. In the case of hyper-spheroidal clusters, the index proposed in this paper is found to be always as good or better than these indices. In addition, it is shown to work well on multidimensional and noisy data sets. One of its advantages is the ability to handle single cluster case and sub-cluster hierarchies.
منابع مشابه
Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملAn Adaptive Cluster Validity Index for the Fuzzy C-means
Based on the basic theory of fuzzy set, this paper suggests the notion of FCM fuzzy set, which is subject to the constraint condition of fuzzy c-means clustering algorithm. The cluster fuzzy degree and the lattice degree of approaching for the FCM fuzzy set are presented, and their functions in the validation process of fuzzy clustering are deeply analyzed. A new cluster validity index is propo...
متن کاملSum-of-Squares Based Cluster Validity Index and Significance Analysis
Different clustering algorithms achieve different results to certain data sets because most clustering algorithms are sensitive to the input parameters and the structure of data sets. Cluster validity, as the way of evaluating the result of the clustering algorithms, is one of the problems in cluster analysis. In this paper, we build up a framework for cluster validity process, meanwhile a sum-...
متن کاملDevelopment of An External Cluster Validity Index using Probabilistic Approach and Min-max Distance
Validating a given clustering result is a very challenging task in real world. So for this purpose, several cluster validity indices have been developed in the literature. Cluster validity indices are divided into two main categories: external and internal. External cluster validity indices rely on some supervised information available and internal validity indices utilize the intrinsic structu...
متن کاملA cluster validity index for fuzzy clustering
Cluster validity indexes have been used to evaluate the fitness of partitions produced by clustering algorithms. This paper presents a new validity index for fuzzy clustering called a partition coefficient and exponential separation (PCAES) index. It uses the factors from a normalized partition coefficient and an exponential separation measure for each cluster and then pools these two factors t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intell. Data Anal.
دوره 12 شماره
صفحات -
تاریخ انتشار 2008